skip to main content


Search for: All records

Creators/Authors contains: "Atamtürk, Alper"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider the convex quadratic optimization problem in$$\mathbb {R}^{n}$$Rnwith indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of an$$(n+1) \times (n+1)$$(n+1)×(n+1)positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of this class of problems reduces to describing a polyhedral set in an extended formulation. While the vertex representation of this polyhedral set is exponential and an explicit linear inequality description may not be readily available in general, we derive a compact mixed-integer linear formulation whose solutions coincide with the vertices of the polyhedral set. We also give descriptions in the original space of variables: we provide a description based on an infinite number of conic-quadratic inequalities, which are “finitely generated.” In particular, it is possible to characterize whether a given inequality is necessary to describe the convex hull. The new theory presented here unifies several previously established results, and paves the way toward utilizing polyhedral methods to analyze the convex hull of mixed-integer nonlinear sets.

     
    more » « less
  2. Abstract

    In this paper, we study the convex quadratic optimization problem with indicator variables. For the$${2\times 2}$$2×2case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the$${2\times 2}$$2×2case as a building block, we derive an extended SDP relaxation for the general case. This new formulation is stronger than other SDP relaxations proposed in the literature for the problem, including the optimal perspective relaxation and the optimal rank-one relaxation. Computational experiments indicate that the proposed formulations are quite effective in reducing the integrality gap of the optimization problems.

     
    more » « less
  3. Abstract

    We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the epigraph of the quadratic can be obtained from inequalities for the underlying supermodular set function by lifting them into nonlinear inequalities in the original space of variables. Explicit forms of the convex-hull description are given, both in the original space of variables and in an extended formulation via conic quadratic-representable inequalities, along with a polynomial separation algorithm. Computational experiments indicate that the lifted supermodular inequalities in conic quadratic form are quite effective in reducing the integrality gap for quadratic optimization with indicators.

     
    more » « less
  4. We describe strong convex valid inequalities for conic quadratic mixed 0–1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0–1 relaxations. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint over binary variables and unbounded continuous variables. We then generalize and strengthen the inequalities by incorporating additional constraints of the optimization problem. Computational experiments on mean-risk optimization with correlations, assortment optimization, and robust conic quadratic optimization indicate that the new inequalities strengthen the convex relaxations substantially and lead to significant performance improvements. 
    more » « less